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Abstract 

This master thesis aims to implement an approximation algorithm for finding the shortest 

path on a two dimensional surface with potential obstacles. The algorithm is especially geared 

at in-field routing for agricultural vehicles, where the obstacles and the boundary are inclined 

to exhibit complex geometries, whereas the total amount of obstacles is in general moderate. 

The algorithm consists of two major stages. In the first stage, it generates a graph with non-

colliding edges based on the recursive generation and transformation of convex hulls. In the 

second stage, the Dijkstra algorithm is applied to find the shortest path on this graph. 

To evaluate the performance and the feasibility of the proposed algorithm, 100 test cases are 

conducted with real field data, derived from historical GPS trajectories, with both the 

proposed algorithm and the visibility graph algorithm. The results show that the proposed 

algorithm could reduce the running time significantly while delivering the same result. For a 

single-shot request, in which the graph should be generated on an ad hoc basis, the proposed 

algorithm needs in average only 5% of the time needed by the brute-force implementation of 

the visibility graph counterpart. Even for repeated requests, where the visibility graph 

approach could trade some space for time efficiency through caching, the proposed algorithm 

is still at a slight advantage. 

Keywords: shortest path, convex hull, in-field routing 
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Kurzfassung  

Das Ziel dieser Masterarbeit ist es, einen Algorithmus für die Suche nach dem kürzesten Weg 

auf einer zweidimensionalen Oberfläche mit Hindernissen zu implementieren. Der 

Algorithmus eignet sich speziell für die Anwendung im Infield-Routing landwirtschaftlicher 

Fahrzeuge, wo die Hindernisse und die Grenzen in der Regel komplexe Geometrien 

aufweisen, die Gesamtmenge von Hindernissen auf einem Feld allerdings gering ist. 

Der Algorithmus besteht aus zwei Schritten: Als erster Schritt wird ein Graph mit 

kollisionsfreien Kanten durch die rekursive Erzeugung sowie Transformation der 

Konvexhülle erzeugt. Im zweiten Schritt wird der Dijkstra-Algorithmus verwendet, um den 

kürzesten Weg auf diesem Graphen abzuleiten. 

Um die Leistung und die Eignung dieses Algorithmus zu bewerten, werden 100 Testfälle auf 

realen Felddaten, die von historischen GPS-Trajektorien abgeleitet sind, mit sowohl dem 

vorgeschlagenen Algorithmus als auch dem Sichtbarkeitsgraphen-Algorithmus durchgeführt. 

Die Ergebnisse zeigen, dass der vorgeschlagene Algorithmus die gleichen Routen mit einer 

erheblich reduzierten Laufzeit liefert. Bei einer einmaligen Anfrage, bei der der Graph auf 

einer Ad-hoc-Basis erzeugt werden muss, braucht der vorgeschlagene Algorithmus im Schnitt 

nur knapp 5% der Zeit, die der Sichtbarkeitsgraph-Algorithmus benötigt. Auch bei 

wiederholten Anfragen, bei denen der Sichtbarkeitsgraph-Ansatz die Laufzeit durch Caching 

des Graphen reduzieren kann, bleibt der vorgeschlagene Algorithmus in einem leichten 

Vorteil. 

Stichwörter: kürzester Weg, Konvexe Hülle, Infield-Routing  
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Chapter 1 Introduction 

A point to point routing problem can be defined as the derivation of the optimal path from 

one position to another. Such a problem usually consists of three elements: data, criteria and 

algorithms. Data specify the geometry, as well as the attributes of possible paths or passable 

areas. The optimal path could be defined by different criteria. It could be the shortest, the 

fastest, the most economical path and so on. The algorithms then start from the available 

data and calculate the optimal path, locally or globally, under the given criteria. 

These three elements vary from domain to domain. In the agriculture domain, these three 

elements also have their particularities: The emerging application of drones and sensors are 

contributing more data than ever, enabling navigation with higher precision; When evaluating 

a path, both the parameters of the machine and its impact on the environment should be 

considered; Also, unlike urban traffic, agricultural traffic is not limited to a certain road 

network, it often occurs on a surface with boundary and obstacles, which means that 

algorithms for graph generation are prerequisites for routing.  

However, the rationale of paying more attention to agricultural routing comes not only from 

its particularities, but also from its importance. 

Ever since the industry revolution, great efforts have been made to improve the productivity 

in the primary sector. Considering the fact that the demand of affordable and safe food 

continues to increase as the result of growing world population, and that the percentage of 

population involved in agricultural production decreases steadily as the result of urbanization, 

it is reasonable to conclude that the need to increase the efficiency of agricultural production 
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will continue to exist in the future. According to the forecasts of World Bank (Figure 1.11), 

until 2050 the total population on our planet will increase to approximately 9.5 billion (from 

7.3 billion in 2015), while the total percentage of rural population will decrease to 33.8% 

(from 46.1% in 2015). 

 

Figure 1. 1    Prediction for Urban and Rural Population 

There are many different ways to improve productivity in the agriculture sector. Three 

important aspects highly related to path planning are mechanization, automation and 

optimization. 

Machinery of different kinds enables an essentially higher work rate than human force and is 

at the same time the prerequisite for further automation. As the field machinery diversifies 

with rapid technological development, agricultural activities are usually achieved by a multi-

machine system. The efficiency of the entire system depends on both the individual machine 

and the coordination among them. 

Recently, the automation process in the agriculture sector is no longer limited to replacing 

human work with the operation of machines. Even the operation of the machinery is being 

automated through autonomous systems (Chapter 1.2.1). Compared to the manual operation, 

an autonomous system has several advantages. For starters, an autonomous system could 

achieve a higher operational accuracy. Another benefit of the autonomous systems is the 

extended work time. Unlike human beings, machines wouldn’t get fatigued even through 

                                                        
1 Data Source: Health Nutrition and Population Statistics: Population estimates and projections. Word Bank. 
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longer spells, thus operational breaks to maintain a high level of concentration are no longer 

necessary.  For most autonomous systems, path planning is an important component. 

On the other side, the impact of agricultural activities on the environment should not be 

neglected. In this regard, the application of field machinery could be seen as a two-edged 

sword. For example, the abundant use of herbicide has made some weed species resistant to 

it. A more sustainable solution that doesn’t involve gene technology or harmful chemicals is 

high-speed mechanical weed control (Slaughter, Giles, & Downey, 2008). However, the 

traveling of large machines might cause soil compaction, which will reduce the yield (Chapter 

1. 1. 3). Besides, the usually higher fuel consumption of field machinery will also cause more 

CO2 emission. Therefore, it is both an environmental concern and an economical concern to 

optimize the in-field travel routes of agricultural machines. 

Furthermore, various sensors mounted on the field machinery are providing tremendous data 

about the condition of the crops and the performance of the machine. The analysis of such 

data provides a huge potential for further optimization. Considering the emergence of various 

drones and field robotics, agricultural vehicles might not be the only beneficiary of a precise 

route planning system. 

This thesis is organized as follows: The first chapter offers some background information 

related to field machinery and the automation of agricultural operations. The existing 

solutions to the described problem and the agricultural routing in general are introduced in 

Chapter 2. The concept and some implementation details of the proposed algorithm is the 

topic of Chapter 3. In Chapter 4, the performance of this algorithm is evaluated based on an 

in-depth comparison with the visibility graph algorithm. 

1. 1 Field Machinery 

The beginning of agricultural mechanization could be traced back to the late 19th and early 

20th centuries, enabled by the development of the steam engine as a relatively portable power 

source. At that time, however, only wealthy agricultural producers could afford such costly 

machines. In the 1920s and 1930s, smaller tractors with internal combustion engines that ran 

on gasoline were massive produced and more farmers could afford them. Since then, 
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different attachments and machinery has been invented to automate tasks that were 

previously performed by hand (Kutz, 2013). 

The introduction of field machinery like tractors and combine harvesters not only radically 

changed the nature of field operations towards more automation, but also constituted a new 

logistic chain that is different to the traditional one.  

Depending on the direction of the material flow, the operations can be characterized as 

“input material flow” operations (e.g., seeding, spraying and fertilizing) or “output material 

flow” operations (e.g., harvesting). The field and the facility units, whether stationary (e.g. a 

farm depot or a silo) or mobile (e.g. public road transport trucks), constitute the two anti-

diametric ending links of the material flow chain (D. D. Bochtis, Sørensen, & Vougioukas, 

2010). 

Using harvesting as an example, it is a common practice to use multiple harvesters, unloading 

vehicles and street transporters for large fields (Scheuren, Hertzberg, Stiene, Hartanto, & 

Center, 2013). The multi-machine coordination and the logistic chain could be depicted as 

follows: A harvester stores the crop in its tank until the maximum capacity is reached and 

waits for the unloading vehicle. During the transfer of crop from the harvester to the 

unloading vehicle, the two involved vehicles could both stay stationary or drive in parallel. 

Then the unloading vehicle approaches the next harvester that is in need of a service. This 

harvester might work on the same field or on another field nearby. When the unloading 

vehicle itself is fully loaded, it moves to the field border to unload the crop to a street 

transporter. The street transporter then uses the road system to transport the grain to the silo.  

According to the terminology of D. D. Bochtis, Sørensen and Vougioukas (2010), the 

harvesters in this scenario that execute the main task are primary units (PU) and the 

unloading vehicles that support the primary units are service units (SU). In the following parts 

of this thesis, the notion of primary units and service units is adopted. In terms of trajectory 

patterns, these two kinds of machines differ: Primary units usually cover the whole field (see 

also Chapter 2.2.2) and service units usually move between the primary units and further 

servicing points. Thus, primary units and service units also require different methodology for 

path planning. 
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Besides the changes in logistic chain, the utilization of field machinery also brought in more 

challenges in terms of management (Sørensen & Bochtis, 2010), such as the choice of the 

optimal level of mechanization which involves the choice of machinery size and the 

constitution of the necessary fleet (Søgaard & Sørensen, 2004). This is also the topic of 

Chapter 1.1.2. 

1. 1. 1 Guidance Systems for Field Machinery 

The guidance system of a vehicle determines its moving course. The precision of the 

guidance system also determines the ability of a certain machine to follow a pre-defined path. 

Therefore, it is an important factor for the efficiency. According to the classification of Kutz 

(2013), there are four different strategies for guiding vehicles: 

x manual – An operator steers the vehicle based on their observations of the 

surroundings. 

x operator assisted – An operator steers the vehicle based on a signal from the guidance 

system . 

x semi-autonomous – The guidance system steers the vehicle, but an operator is present 

to ensure the system is working properly and performs other vehicle functions that 

are not automated. 

x fully autonomous – No operator required. Fully autonomous vehicles tend to use 

GPS as a primary source of location, and an array of secondary sensors for location 

relative to the crop and safety.  

1. 1. 2 Fleet Management 

The involvement of multiple machines in agricultural campaigns increases the need for better 

coordination and management, not only for the primary units, but also for the service units, 

since the performance of service units can also affect the productivity of the entire system 

significantly. For instance, a non-optimal path of a transport unit may cause a high-capacity 

combine to remain idle, while waiting to unload its fully loaded tank. Furthermore, assuming 
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the heavy loads carried by transport units, the traveled path may have a significant impact on 

soil compaction (Jensen, Bochtis, Sørensen, Blas, & Lykkegaard, 2012). 

Agricultural fleet management mainly deals with farmers’ or machine contractors’ decision-

making concerning resource allocation, scheduling, routing, and real-time monitoring of 

vehicles and materials. It involves the process of supervising the use and maintenance of 

machines and the associated administrative functions including the coordination and 

dissemination of tasks and related information for solving the heterogeneous scheduling and 

routing problems (Sørensen & Bochtis, 2010). 

The emerging autonomous and intelligent agricultural machines will bring more challenge to 

fleet management since the food production, unlike other industrial activities, are more 

subject to the environmental factors such like weather conditions and crop yield. The 

traditional management system should be especially supplemented with planning features 

such as route planning and sequential task scheduling (Dionysis D. Bochtis, Sørensen, & 

Busato, 2014). 

1. 1. 3 Impact of Large Machinery on the Soil  

Large machinery benefits from the economy of scale, but also causes more negative 

environmental impacts: Unnecessary travels of agricultural machinery will not only cause soil 

compaction, but also more air pollution, as well as waste of fuel.  

Soil compaction is one of the major problems facing modern agriculture. Besides the overuse 

of machinery, intensive cropping, short crop rotations, intensive grazing and inappropriate 

soil management could also lead to soil compaction. The result of soil compaction is 

additional fertilizer requirement and increasing production cost since the physical soil fertility 

decreases due to insufficient storage ability of water and nutrients (Hamza & Anderson, 

2005). Besides, soil compaction also impedes infiltration of rainfall, so the increasing scale of 

mechanization might well be responsible for greater runoff, soil loss by water erosion and 

waterlogging (Tullberg, Yule, & McGarry, 2007). 

In general, heavy machinery will cause two kinds of soil disturbance – vertical disturbance 

throughout the traversal and horizontal disturbance mainly through turning (D. D. Bochtis & 

Vougioukas, 2008). Especially the transport units will have more negative impact on the soil 
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because of the heavy load (D. D. Bochtis, Sørensen, & Vougioukas, 2010). Considering the 

current trend towards employing larger and larger machines (Dieter Kutzbach, 2000), the risk 

of soil compaction is increased even more (D. D. Bochtis, Sørensen, & Vougioukas, 2010).  

To reduce the occurrence of soil compaction, several practical techniques could be 

considered, such as reducing pressure on soil either by decreasing axle load or increasing the 

contact area of wheels with the soil through improvement of tyre or track design (Hamza & 

Anderson, 2005).  

Among the different possible solutions, two are highly relative to the path planning of field 

machinery. The first solution is to reduce the total travel distance and the number of turnings 

of field machinery, which could be achieved by route optimization. The other solution is to 

confine traffic to certain area on the field. This approach is also known as Controlled Traffic 

Farming, which will be introduced in detail in the next section. 

1. 1. 4 Controlled Traffic Farming 

The Controlled Traffic Farming concept was initiated in the USA around 1950 to increase 

crop yields by reducing soil compaction (Taylor, 1983). According to the Controlled Traffic 

Farming (CTF) principles, permanent parallel wheel tracks are created within the field area 

(D. D. Bochtis, Sørensen, Green, Moshou, & Olesen, 2010).  

In such a system, the crop zone and the traffic lanes are distinctly and permanently separated. 

The traffic lanes are not deep tilled and are used for wheel paths year after year. The lanes 

become compacted, improving tractive efficiency and flotation, while the untrafficked crop 

zone, if initially well prepared, tends to stay that way without annual deep tillage (Taylor, 

1983). In this way, the field traffic is limited to the traffic lanes and the headlands which is 

used to turning between lanes and the need for tillage, usually seen as the major cause for 

erosion and soil structural degradation (Tullberg et al., 2007), is also reduced. 

In practice the introduction of Controlled Traffic Farming have three technical requirements: 

x Traffic lanes with an equal span to each other should be established. 

x The width between wheels of the vehicle should be in accordance with the width of 

the traffic lane. 
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x The vehicle should be able to follow the established traffic lanes through advanced 

guidance system, such as Real Time Kinematic Differential Global Positioning 

Systems (RTK-DGPS). 

The first requirement can be achieved with specifically designed wide-span machines –

gantries (Figure 1.2 2 ), but most systems are presently based on modified conventional 

agricultural equipment (Vermeulen, Tullberg, & Chamen, 2010). 

 

The Controlled Traffic Farming concept can also be adopted partially. One example is the 

Seasonal Controlled Traffic Farming (SCTF) system where traffic lanes are not used for 

primary tillage or harvesting, but for all operations in between (Vermeulen et al., 2010). 

The benefits of adopting Controlled Traffic Farming concept has been reported in drier 

regions such as Australia (Tullberg et al., 2007) and Northern China (Qingjie et al., 2009). In 

Western and Middle European some researches are underway to conclude if similar benefits 

could be achieved (Demmel, Brandhuber, Kirchmeier, Mueller, & Marx; Holpp et al., 2011). 

It should also be mentioned that although Controlled Traffic Farming could reduce the 

impact of large machinery on the soil by limiting the damage to certain tracks, it increases the 

travel distance of the SU. The research of D. D. Bochtis, Sørensen, Green et  al (2010) 

showed that the implementation of the CTF system rather than the UCTF system 

                                                        
2 Dedousis, Athanasios P., and Thomas Bartzanas. Soil engineering. Vol. 20. Springer Science & Business Media, 
2010. P102. 

Figure 1. 2    A Picture for Gantry 
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significantly increases the in-field transport distance travelled by the SU. The reduction in 

field efficiency (explained in Chapter 2.2) in terms of transport distance, ranged from 4.68% 

to 7.41%. 

Therefore, the decision-making on the adoption of Controlled Traffic Farming system 

involves a trade-off between shorter travel distances and better soil structure conservation. 

Also, following the tracks precisely poses higher requirements to the guiding system. The 

optimal strategy might differ according to the characteristics of the involved machinery as 

well as the nature of the field operation. 

1. 2 Automation of Field Operations  

1. 2. 1 Autonomous Guiding System 

Researches into autonomous vehicles in agriculture could be traced back to the early 1960s, 

mainly focused on developing automatic steering systems (Pedersen, Fountas, Have, & 

Blackmore, 2006). In the 1980s, the potential for combining computers with image sensors 

provided opportunities for machine vision based guidance systems. In 1997, agricultural 

automation had become a major issue along with the advocacy of precision agriculture (M. Li, 

Imou, Wakabayashi, & Yokoyama, 2009). 

Such autonomous guiding system could further reduce the driver’s work load and extend 

work time during twilight periods (Dieter Kutzbach, 2000). 

An autonomous guidance system usually consists of sensors, computational methods, 

navigation planners and steering controllers (M. Li et al., 2009; John F. Reid, Zhang, 

Noguchi, & Dickson, 2000). Two major sensor components in an autonomous guidance 

system are GPS sensors, and machine vision sensors. GPS and machine vision fused together 

or one fused with another auxiliary technology is becoming the trend development for 

agricultural vehicle guidance systems (M. Li et al., 2009). Machine vision is a relative position 

and heading sensor with the image sensor mounted on the vehicle. Standard image sensors 

provide a color or monochrome response. Positioning of the sensor on the vehicle requires 

an understanding of the geometric relationship between the image sensor, the vehicle and the 

field-of-view that the sensor uses for guidance information. The processed images provide an 
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output signal that can be used to provide a steering signal for the vehicle (John F. Reid et al., 

2000). But it should be mentioned that the machine vision must rely on some local references 

such as crop rows, tilled or untilled boundary and the like to work properly. Usually, a 

directrix needs to be extracted from these local references for the purpose of navigation. 

Combining GPS and vision systems also has another advantage: The two systems have quite 

different failure modes. For example, GPS is subject to multi-path problems and occluded 

satellites, while the vision system tends to have trouble with poor lighting conditions and 

sparse crop. Combining the two systems will provide a significant increase in overall 

robustness of the harvesting operation (Pilarski et al., 2002). 

To improve the navigation accuracy, other auxiliary sensors such as geomagnetic direction 

sensors and inertial sensors could also be used. A geomagnetic direction sensor (GDS) is a 

magnetometer which senses the earth’s magnetic field. It can serve as heading sensor similar 

to an electronic compass. A limitation of GDS sensors is the influence of external 

electromagnetic interference from the vehicle and surrounding sources (John F. Reid et al., 

2000). Inertial sensors take measurements of the moving state of the vehicle. The most 

common types of inertial sensors are accelerometers and gyroscopes. 

Although path planner is an important component in an autonomous system, the research 

focus in this context is usually the extraction of directrix from local environment and the 

precise following of this directrix (Han, Zhang, Ni, & Reid, 2004; John F Reid & Searcy, 

1991). The calculation of a globally optimized path, especially for service units whose driving 

paths are more related to the target machine rather than the crop structure, is rarely 

mentioned in the literature of this category. 

1. 2. 2 Field Robotics 

Parallel to the improvement of large machinery, much smaller field robotics that can handle 

the plants at an individual level is also turning up.  Large machinery might be well suitable on 

open fields mainly for grain cultivation, but they are too cumbersome to be applied in 

greenhouse or horticulture applications (Suprem, Mahalik, & Kim, 2013). Thus, robots of 

smaller size but with more flexibility are required. Especially for high-value crops such as 

vegetables, fruits, ornaments and spices which still require high labor input, the introduction 
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of such field robots has a great potential to provide a leap forward in terms of cost reduction 

and efficiency (Bac, Henten, Hemming, & Edan, 2014). 

However, the work environment of field robots is quite different to that of their industrial or 

laboratory counterparts. For example, the operating areas could be spacious; ground surfaces 

may be uneven, so that wheel slippage may be not negligible any more. Environmental 

conditions (rain, fog, dust, etc.) may affect sensor function (M. Li et al., 2009). Furthermore, 

the crops, which are the target objects of operations like fertilizing and harvesting, are subject 

to seasonal variations. 

Different crops also show extreme variations in the physical form and technical requirements 

during different operations. As a result of these variations, the development of a general 

architecture that is suitable for every crop genre is difficult. 

Although still not mature enough for a large-scale commercialization, some researchers have 

shown that for certain tasks, robots can outperform the conventional systems in terms of 

economic costs, for example, in cases of weeding in high value crops or organic farming, 

harvesting of high value crops, crop scouting in cereals and grass cutting on golf courses (Bac 

et al., 2014; Bakker, Asselt van, Bontsema, Müller, & Straten van, 2010; Grift, Zhang, Kondo, 

& Ting, 2008; Pedersen et al., 2006). 

The field robots developed so far have different movement and navigation strategies. For the 

field robots that are not fixed to a certain position (Belforte, Deboli, Gay, Piccarolo, & 

Ricauda Aimonino, 2006) and those without a trail fixed on the ground, a path-planning 

algorithm that is able to avoid at least stationary obstacles is necessary. González, Rodríguez, 

Sánchez-Hermosilla and Donaire (2009) described such an algorithm based on the Voronoi 

Diagram and Depth First Search. 

Another direction of robot navigation leads towards real-time obstacle detection based on 

machine vision technology. Since the real-time obstacle strategy usually ends up with a sub-

optimal path, a system that could calculate a globally optimal path that avoids the stationary 

obstacles a priori, and then adjust the route to avoid dynamic obstacles will achieve a better 

performance.   
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Chapter 2 State of the Art  

2. 1 The Euclidean Shortest Path Problem 

Besides in-field navigation, the problem of finding shortest paths on surfaces with the 

presence of boundaries and obstacles also comes up in many other real-life scenarios, among 

these scenarios are pedestrian navigation, indoor navigation, motion planning of robots and 

avatar movements in computer games, to name a few. In computational geometry, this 

problem is usually referred to as the Euclidean Shortest Path (ESP) problem (Hong & 

Murray, 2013; F. Li & Klette, 2011). The open problem related to ESP is whether it can be 

solved within O(n + h * logh) time and O(n) space (n is the total number of vertices and h is 

the total number of obstacles) (Mitchell, 2000). 

The difficulty of this problem is the absence of a graph, also known as roadmap in the 

literature. Once a graph is generated somehow, the problem can be solved easily by applying 

the well-known algorithms for finding the shortest path on a graph, such as Dijkstra 

algorithm, A* algorithm, Bellman-Ford algorithm etc. (Fagerholt, Heimdal, & Loktu, 2000). 

Therefore, the general strategy to solve problems in this category is to construct a graph first. 

The following sections will compare four different approaches for the graph generation and 

discuss their suitability for the application in in-field routing. 

Here we assume that some preprocessing has been done so that the moving object can be 

simplified as a point with zero size and its physical limitations (turning radius, width) are 

neglectable. One possible preprocessing is to expand the obstacles appropriately, which is 

widely used for robot motion planning (Berg, 2008; Latombe, 1991). 
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We also assume that the environment is static, which means that no other dynamic obstacles 

will intercept the path of the moving object. 

2. 1. 1 Grid-based Approach 

The first solution is based on the rasterization of the environment. The general idea of this 

approach is to divide the environment into equal-sized cells. This grid-based representation of 

the whole environment may be either binary (each grid cell is either traversable or not) or may 

associate each cell a cost reflecting the difficulty of traversing this cell (Ferguson & Stentz, 

2006; Linker & Blass, 2008). 

Each traversable grid corresponds to a node on the routing graph. Edges are added between 

each pair of nodes that are directly reachable. Two grid cells are directly reachable from each 

other if and only if they are adjacent. For each grid cell, there are either eight adjacent cells or 

four. The definition of neighborhood depends on the degree of freedom of the moving 

object. 

With this approach, the final goal position accuracy as well as the path quality is dependent 

on the granularity of the grid division. Finding an optimal grid size usually involves a trade-

off: Smaller grid sizes can improve the accuracy of both the goal position and the path, but 

only at the expense of larger routing graphs and more unnecessary turnings. Larger grid sizes 

can reduce the complexity of the graph, but may lead to disconnected graphs and eventually 

fail to find a path from the source to the destination. Figure 2.1 shows an example of the 

Figure 2. 1    Graph with Different Grid Sizes 
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relationship between grid size and the connectivity as well as the complexity of the generated 

graph. While the graph generated with larger grid size (left) has less nodes and edges than the 

one generated with smaller grid size (right), it is not connected, if the start and end positions 

are located on different parts, there would be no path found between them. 

In general, this approach applies well to moving objects which can only move in four or eight 

directions, like avatars in old-time computer games, since it limits heading and heading 

changes to 45° or 90°. For omnidirectional moving objects, however, this approach is usually 

sub-optimal since it introduces unnecessary turns (Ferguson & Stentz, 2006). 

Another advantage of this approach is that it can use Breadth First Search (BFS) to find the 

shortest path on the generated graph instead of Dijkstra algorithm, due to the identical length 

of each edge. Also, the running time of BFS is linear to the number of edges, which is faster 

than the Dijkstra algorithm.  

2. 1. 2 Triangulation-based Approach 

This category of algorithms involves the intial triangulation of the polygon. Its general idea is 

similar to the grid-based approach. Instead of grid cells, the passable area is represented by 

non-overlapping triangles. A triangulation of a polygon P is a decomposition of P into 

triangles by a maximal set of non-crossing diagonals (Devadoss & O'Rourke, 2011). The 

triangulation can be achieved by the well-accepted Delaunay triangulation algorithm (Berg, 

2008), which adds the diagonals in such a way that the minimum interior angle of all triangles 

is maximized. 

If finding a path fast is more important than finding the globally shortest path, the route 

graph could be identical to the dual graph of the planar graph that results from the 

triangulation step: Each triangle is represented by a node on the routing graph. Adjacent 

triangles are linked with an edge. Figure 2.2 shows the workflow of this algorithm with a 

concrete example. 

Although the triangulation of a give polygon is not unique, the triangulation theorem 

guarantees that every triangulation of a simple polygon (without holes) with n vertices has n-2 

triangles (Devadoss & O'Rourke, 2011), for a polygon with h holes and in total n vertices, the 

number of triangles is n+2h-2 (O'rourke, 1987).  Therefore, the complexity of the generated 



24 
 

graph is determined by the number of vertices and holes of the given polygon. Similar to the 

grid-based approach, this variant may as well introduce many unnecessary turns. 

If finding the shortest path is more important than finding a path quickly, the dual graph can 

not be used for routing directly. Kapoor, Maheshwari and Mitchell (1997) described an 

algorithm for finding the shortest path based on triangulation: Firstly, the start position and 

end position are incorporated into the triangulation through linking them to the three corners 

of the triangles that contain them respectively. Secondly, the triangles are divided into 

junction triangles (triangles that are formed with three diagonals) and corridors (triangles that 

serve as channels between the junction triangles), each corridor has two doors. If the shortest 

path passes through a corridor, it must intersect both two doors of this corridor. Then, the 

hourglass of each corridor is generated. The hourglass could be imagined as two non-crossing 

taut strings, originating from one door and ends at the other door. The hourglass can be 

either open or closed. Closed hourglasses usually have two funnels and a corridor path. The 

route graph is a subgraph of the visibility graph generated from the vertices on junction 

triangles, open hourglasses and funnels.  

3) Graph Generation 

1) Original Input 2) Triangulation 

Figure 2. 2    The Triangulation-based Approach in Steps 
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Either way, the time complexity of triangulation-based algorithms is usually asymptotically 

dominated by the triangulation process, which has a time complexity of O(n*logn), with n 

representing the number of vertices in total. 

2. 1. 3 Visibility Graph 

The visibility graph algorithm is a canonical solution to the shortest path problem in 

discussion. It was proposed by Lozano-Pérez and Wesley in 1979. The theoretical 

cornerstone of this algorithm is the following observation: 

In the case of motion in the plane with arbitrary polygonal objects, the shortest 

collision-free path connecting any two accessible points always has the property that it 

is composed of straight lines joining the origin to the destination via a possibly empty 

sequences of vertices of obstacles (Lozano-Pérez & Wesley, 1979). 

Viegas and Hansen (1985) also proved that, when distances are measured by an lp–norm with 

1 < p < ∞, the shortest paths between given sets of points in the plane that do not cross any 

of a finite set of polygonal barriers are always formed by sequences of connected straight line 

segments whose intermediate (e.g. apart from origin and destination) end points are barrier 

vertices. 

Since a visibility graph is constructed by connecting each pair of mutually visible vertices in 

the environment plus the source and destination position, the shortest path can only be a 

sequence of the edges on this graph. Figure 2.3 shows a concrete example of the visibility 

graph derived from a polygon with holes. 

Figure 2. 3    An Example for Visibility Graph 
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The brute-force implementation of visibility graph generation usually takes O(n3) 

computation time (Huang & Chung, 2004), since it iterates through all pairs of nodes and 

checks if the line segment formed by this pair of vertices crosses with any obstacle. Although 

there are improved implementations which reduce the running time complexity to O(n2) 

(Gajentaan & Overmars, 1995; Welzl, 1985), a quadratic run-time is still very sensitive to the 

input size. 

Another variant of the visibility graph is the local visibility graph, which is generated in a 

similar fashion as the visibility graph, but attempts to filter obstacles using different spatial 

knowledge. However, the local visibility graph usually fails to handle the intersection with 

regional boundaries and sometimes could not even find the optimal path  (Hong & Murray, 

2013). 

2. 1. 4 Convex Hull Approach 

The convex hull problem is a classical topic in computational geometry. It is defined as the 

smallest convex set that contains a set of given points (Berg, 2008).  

But leveraging convex hull generation for finding shortest path it not yet widely practiced. 

Hong and Murray implemented a similar algorithm within a GIS system in 2013, but there are 

several minor flaws in their implementation. Firstly, it is implemented with GIS software, 

which poses limitations on the input and output format as well as the integration with other 

services. Secondly, the concavity of obstacles is not well discussed. 

The underlying rationale of solving shortest path problems through recursive convex hull 

generation is the following observation: 

The optimal Euclidean shortest path between two points separated by a single convex 

contiguous obstacle will be on the convex hull boundary (Hong & Murray, 2013). 

But the plot thickens if there are multiple obstacles. First of all, the beeline connecting the 

start position and the end position might cross with multiple obstacles instead of a single 

obstacle. In this case, we should generate the convex hull of each impeding obstacle plus the 

endpoints individually. Secondly, the edges on the generated convex hulls might further cross 

with other obstacles. According to the terminology coined by (Hong & Murray, 2013), these 
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obstacles are defined as indirect impeding obstacles, as opposed to the direct impeding 

obstacles. The convex hull routine should be applied recursively until all the edges on the 

graph are collision free. 

The possible concavity of both the boundaries and the obstacles adds another layer of 

complexity to this algorithm. During the replacement of a colliding edge with a convex hull, 

an invariant should be maintained: The start position and end position should always be 

connected in the graph. The solutions to these edge cases will be discussed in more detail in 

Chapter 3. 

Despite the intrinsic complexity of the edge cases, the convex hull approach shows several 

advantages compared to the other three approaches. Firstly, it takes only the direct and 

indirect obstacles into consideration which reduces the size of the generated graph. All the 

other three alternatives take the whole environment into consideration. Secondly, it will not 

introduce additional unnecessary turns as the grid-based approach and the triangulation-based 

approach usually do. 

However, the reduction of graph size comes at an expense. Unlike the other three 

approaches, the graph generated using the convex hull routine is highly dependent on the 

position of the source and destination. As Figure 2.4 shows, even a slight shifting of the 

source or the destination might require the entire re-generation of the graph. In contrast, the 

graph generated by the other three approaches is global and independent of the start and end 

Figure 2. 4    Comparison of Different Start and End Positions 
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position. Therefore, the graph can be cached for repetitive requests in the same environment 

configuration. 

2. 1. 5 A Comparison Regarding In-field Navigation 

To compare the four algorithms for graph generation in terms of their suitability for in-field 

navigation, the following aspects should be considered: 

x running time (time complexity) 

Since in-field navigation needs to cope with real-time requests that might come at a high 

frequency, during harvest champagnes, for example, the running time is critical. The total 

running time is added up by the running time of graph generation and the running time for 

finding the shorted path on the graph, including the assignment of weight to each edge on the 

graph. 

x graph size 

The graph size can be measured in terms of the number of nodes or edges. It matters for 

several reasons. Firstly, it is directly related to the running time for the finding the shortest 

path on the graph. Secondly, larger graphs require more memory usage. Furthermore, if the 

in-field navigation is to be integrated with other services such as inter-field navigation, the 

generated graph need to be passed on to other servers through the network. Transporting 

large amount of data through the network can easily become the bottleneck of the entire 

system. 

x existence and length of the calculated shortest path 

The connectivity of the generated graph is a prerequisite for the existence of the shortest 

path. The length of the shortest path is directly related to the travel time, energy 

consumption, as well as the impact on the soil by the field machinery.  

x number of additional turns 

Due to their usually over-average physical size, turning is more difficult for agricultural 

vehicles as it is for normal vehicles, especially when the agricultural vehicle has any 
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attachment at its front or back (e.g. combine harvester). Besides, as mentioned in Chapter 1, a 

turning vehicle will also incur more negative impact on the soil (additional horizontal 

disturbance of soil) as one going straight. 

x possibility for caching the graph 

If the generated graph is not dependent on the start and end position, it can be generated 

once and cached for repeated requests on the same field. 

The table below evaluates the four algorithms according to the criteria discussed above: 

Table 2. 1    Comparison of Graph Generation Algorithms 

 Grid Triangulation Visibility 
Graph Convex Hull 

Running 
Time for 

Graph 
Generation 

dependent on 
the grid size 

O(n*logn) for 
triangulation(Berg, 
2008) 
O(n) for graph 
generation on the 
triangulated 
polygon(Hershberger, 
1989) 

O(n2) O(n) for a single 
convex hull 
generation, but 
the total number 
of recursion is 
dependent on the 
input data 

Existence of 
a Shortest 

Path 

not guaranteed guaranteed guaranteed guaranteed 

Graph Size dependent on 
the grid size 

O(n) in general O(n2) dependent on the 
input data 

Additional 
Turns 

dependent on 
the grid size  
( smaller grid 
size will 
introduce more 
additional 
turnings) 

dependent on the 
number of vertices of 
the given polygon 

no 
additional 
turns 
introduced 

no additional 
turns introduced 

Caching  possible possible possible not possible 



30 
 

In terms of reducing additional turns, both the grid-based and the triangulation-based 

approach are suboptimal for in-field navigation. For the grid-based approach, the space 

between two obstacles on the field might be narrow. Correspondingly, to guarantee the 

existence of the shortest path, the grid size also needs to be small, which will increase the 

number of additional turns. For the triangulation-based approach, the number of nodes of 

the generated graph is identical to the number of triangles, which is linear to the number of 

vertices and holes. In some regions, such as Denmark or Mecklenburg-Vorpommern in 

Germany (Figure 2.5 3 ), field geometries are sometimes complex and, as a consequence, 

involve many vertices. 

A large amount of vertices also affects the performance of the visibility graph, which has a 

time complexity that grows at least quadratically with the input size. In such cases, the convex 

hull approach has an edge over the other three alternatives in terms of the graph size. The 

cost is that the graph needs to be generated in every new request. But as the test results in 

Chapter 4 show, even under the assumption of caching, the convex hull approach still 

outperforms the visibility graph algorithm. 

Besides the algorithms that generate the graph first, there are also other approaches that find 

the shortest path without graph generation. One of them is the continuous Dijkstra which 

involves simulating the effect of a “wavefront” propagating out from the source point. An 

                                                        
3 Screenshots from http://teleagroplus.geog.uni-heidelberg.de/taplus_webgui/ 

Figure 2. 5    Complex Field Geometries in Mecklenburg-Vorpommern 
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optimal implementation of this algorithm is described in the paper of Hershberger and Suri 

(1999). 

2. 2 Route Planning in Agriculture Domain 

The current research about route planning for agricultural vehicles generally falls into two 

categories. The first category is dedicated to improving the efficiency of field logistics. As 

mentioned in the first chapter, agricultural tasks are usually carried out by a fleet of machines, 

and the overall efficiency is dependent on both the efficiency of each single unit and their 

coordination. The second category is about field coverage planning which aims to find an 

optimal route, mainly for the PU, which traverses the entire area of a certain field. 

The following two sections will give an overview of these two categories respectively. 

2. 2. 1 Field Logistics Optimization 

Logistics in general are defined as the provision of goods and services from a supply point to 

various demand points. Logistics within agriculture may be viewed as the material flow in the 

production process. This material flow usually has fields on one end and storage sites or the 

public transportation system on the other end, linked by multiple machines. Thus, a great part 

of field logistics optimization is about improving the inter-machinery coordination. The basic 

logistical notion is that all operations and actions must create an added value in the process 

chain through the process of having the right thing, at the right place, at the right time 

(Sørensen & Bochtis, 2010). 

An important measure of agricultural machine performance during field operation is its field 

efficiency. In the literature it is defined differently. Hunt (2008) defined it as a percentage 

indicating the ratio of the time a machine is effectively operating to the total time that the 

machine is committed to the field operation, D. D. Bochtis and Vougioukas (2008) defined it 

as the ratio between the productivity of the machine under field conditions and the 

theoretical maximum productivity. The author prefers the first definition and is of the 

opinion that the second definition is probably a confusion with operational efficiency, which 

expresses the ratio between the actual in-field productivity and the maximum theoretical 
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productivity defined by the maximum speed and maximum working width (Witney, 1988). 

Either way, it reflects how well the machines are utilized for agricultural operations. 

There are multiple factors that can impair field efficiency, such as the turning of the machine 

near field edges and obstacles as well as loading and offloading of agricultural goods  

(Spekken & de Bruin, 2013),  which is often referred to as servicing in literature. Besides, field 

efficiency is also dependent on field size (Witney, 1988) and crop conditions like yield and 

moisture (D. D. Bochtis & Vougioukas, 2008). 

Especially the first two culprits for field efficiency reduction are highly-related to path 

planning. Since most agricultural tasks are achieved by a multi-machinery system, the 

optimization of the overall system relies on a synchronous motion planning for both PUs and 

SUs (D. D. Bochtis, Sørensen, & Vougioukas, 2010). Scheuren et al. (2013) presented an 

approach for in-field path planning for autonomous unloading vehicles that considered the 

unharvested area as a dynamic obstacle and additional constraints like the harvester’s 

kinematics, dynamics and its unloading direction. 

Due to the intrinsic complexity of such overall optimization, most research in this area is still 

prototypical and conceptual. In most real life cases, crop harvesting operations are still planed 

based on the experience of the farmers operating the vehicles. Delays are common due to bad 

cooperation between the combines and the tractors, decreasing the overall duration (Ali, 

Verlinden, & Van Oudheusden, 2009). 

2. 2. 2 Field Coverage Planning 

The goal of coverage planning is to find a continuous non-overlapping route that covers a 

certain area with potential obstacles. It has many other application areas besides field 

operations, such as floor cleaning and underwater searching (Timo Oksanen & Visala, 2009). 

The coverage path planning problem for agricultural field operations has been discussed in 

many publications: Zandonadi (2012) developed and evaluated a routing algorithm that took 

not only field efficiency but also off-target application areas into consideration, because these 

areas, especially in oddly shaped agricultural fields, might be as important as field efficiency 

when it comes down to the total operation cost.  D. D. Bochtis and Vougioukas (2008) 

expressed the field coverage problem as the traversal of a weighted graph and related the 
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problem of finding an optimum traversing sequence with the problem of finding the shortest 

route in the graph . Oksanen and Visla (2007) presented two algorithms for coverage 

planning for agricultural fields (T Oksanen & Visala, 2007): one is off-line and uses a top-

down approach to split complex-shaped fields into simple ones, another is on-line and uses a 

bottom-up approach to cover the field using prediction and exhaustive search methods. Since 

coverage planning is not the focus of this thesis, the details about these algorithms are not 

introduced here. 
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Chapter 3 Concepts and Implementation 

3. 1 The Overarching Concept 

The algorithm is consisted of two major steps. In the first step, a graph with non-colliding 

edges is generated based on the recursive application of the convex hull algorithm. In the 

second step, each edge in the graph is associated with a weight and the shortest path is 

calculated with the Dijkstra algorithm.  

The following two sections in this chapter will describe the two steps respectively. 

3. 2 Generation of the Routing Graph  

3. 2. 1 Pseudocode 

First of all, we give a mathematical formulation for the graph generation: Given a polygon P 

with potential holes, let VP represent the set of all the vertices on P, either on the boundary or 

on the holes. Also, S and T are the start position and the end position respectively. Both S 

and T are either on the boundary of P or interior to P. The goal is to derive a connected 

graph G = (VG, EG), so that S, T ∈ VG, {VG\S, T} ⊆ VP and for ∀e ∈ EG, e does not cross 

with P. 

In simplicity, the algorithm for graph generation could be described with the following 

pseudocode:  
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Algorithm 1    GenerateGraph(Point* S, Point* T, Polygon* P): 

1:    intialize a new graph G 

2:    add edge (S, T) to G 

3:    AdjustGraph(G, P)    // helper routine to adjust the graph 

4:    return G 

Algorithm 2    AdjustGraph(Graph* G, Polygon* P): 

1:    for each edge in G: 

2:        for each obstacle in P: 

3:            if edge crosses with obstacle: 

4:                generate the convex hull of {edge, obstacle} 

5:                convert the convex hull to graph G’ 

6:                AdjustGraph(G’, P) // adjust the graph recursively 

7:                remove this edge from G 

8:                add G’ to G 

9:            end if 

10:       end for 

11:   end for 

12:   return 
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The pseudocode above applies well to the normal cases with only convex boundaries and 

convex obstacles. But we have to pay attention to the following edge cases: 

If the boundary is concave, the beeline between source and destination might cross with the 

outer boundary. In this case, generating the convex hull will not work since both the source 

and destination are in the interior of the outer boundary (Figure 3.1 b). To cope with this 

kind of concavity, the outer boundary should be replaced by its convex hull, and the extra 

areas (pockets) introduced during the transformation should be added as new obstacles. 

These new obstacles should also be kept record of since they require a different treatment 

later. This will be explained in more detail in Chapter 3.2.3. 

For a certain edge that crosses with one or more obstacles, if the impeding obstacle is 

concave and at least one of the two extreme points of the edge is located within the convex 

hull of this obstacle, the generated convex hull would also fail to link the source and 

destination position (Figure 3.1 a). In this situation, the convex hull needs to be transformed 

to include both the endpoints. This is the topic of Chapter 3.2.4. 

3. 2. 2 Normal Case with Convex Boundary and Convex Obstacles 

If the outer boundary is convex, the edges of the graph will not cross with the outer 

boundary, since a convex polygon has the property that it covers all the line segments that 

link two of its interior points (Berg, 2008). If an edge crosses with multiple obstacles, the 

convex hull should be generated for each impeding obstacle individually. 

a) Concave Obstacle 

Figure 3. 1    Edge Cases with Concave Boundary or Concave Obstacle 

b) Concave Boundary 
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 Figure 3.2 is a concrete example of this category illustrated in steps: 

a) initial input 

b) generate the beeline and add it to the initialized graph 

c) generate the convex hull for the impeding obstacle 

d) adjust each edge on the graph recursively until it is collision-free. 

 

 

3. 2. 3  The Edge Case with Concave Boundaries 

To explain the edge cases better, some nomenclature should be introduced first: 

auxiliary obstacle: one continuous area of the geometry difference between a 

concave polygon and its convex hull. In geometry, this area is also known as pocket 

(Toth, O'Rourke, & Goodman, 2004). One concave polygon could have several 

auxiliary obstacles. 

(c) 

Figure 3. 2    An Example for Normal Case 

(a) (b) 

(d) 
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auxiliary edge: the common edge that is shared by an auxiliary obstacle and the 

convex hull. 

Figure 3.3 gives a visual explanation for the auxiliary obstacle and the auxiliary edge. 

As mentioned before, if the outer boundary is not convex, it could cross with the edges on 

the graph. In this case, the outer boundary should be transformed to a convex one in 

advance, and the auxiliary obstacles introduced through this process should be regarded as 

new obstacles. After this transformation, an edge case with concave boundary boils down to 

the normal case. 

However, the newly introduced auxiliary obstacles require some additional logic when 

deciding whether they cross with a certain edge. Besides, the convex hull that stems from an 

auxiliary obstacle needs further processing as well to exclude the edges that are actually 

located outside the original outer boundary. Therefore, we should label the auxiliary obstacles 

differently so that we can tell them apart from the original ones. 

For original obstacles, we say an edge crosses with an obstacle if and only if they have some 

internal points in common. For an edge, which is a line segment geometrically, the internal 

points are defined as all the points on it except for the two endpoints. For an obstacle, which 

is a polygon geometrically, the internal points are all the points inside the boundary, points on 

the boundary are not included. In other words, if an edge lies on the boundary of the 

Figure 3. 3    Auxiliary Obstacle and Auxiliary Edge 
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obstacle, they are not treated as crossing (Figure 3.4 left), as a result, the obstacle is not an 

impeding obstacle. 

But for an auxiliary obstacle that is introduced through the transformation of concave 

boundaries, the auxiliary edge that it shares with the transformed boundary doesn’t exist on 

the original boundary. If this auxiliary edge has some common points with the edge that we 

want to test, the obstacle and the edge are treated as crossing, although they don’t have any 

internal point in common according to our previous criterion (Compare Figure 3.4 and 3.5). 

 

By the same token, the generated convex hull also requires further processing to exclude the 

path that is outside the original boundary. For an original obstacle, if it crosses with a certain 

edge, we generate the convex hull of the geometry collection which includes both the 

obstacle and the crossing edge. Regarded as a graph, the resulting convex hull is a cycle that 

crossing non-crossing 

Figure 3. 4    Crossing for Original Obstacles 

Figure 3. 5    Crossing for Auxiliary Obstacles 

crossing crossing 
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includes two valid paths from one endpoint to the other endpoint of the edge (Figure 3.7). 

For an auxiliary obstacle, however, we should exclude the path that passes through the 

auxiliary edge since part of it is outside the original boundary. For instance, in Figure 3.6, the 

blue path should be excluded because it is not valid on the original boundary, while both the 

red path and the blue path are valid for the original obstacle in Figure 3.7. 

 

Also, Figure 3.8 shows an example with concave boundary step-by-step: 

Figure 3. 7    Two Paths on the Convex Hull 

Figure 3. 6    Path Exclusion for Auxiliary Obstacle 
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a) initial input 

b) transform the outer boundary and generate the beeline from the start position to the 

end position 

c) generate the convex hull for an impeding auxiliary obstacle 

d) exclude the path on the convex hull that is not traversable with the original boundary 

e) adjust the edges on the graph recursively as in the normal case 

 

(a) (b) 

(c) (d) 

(e) 

Figure 3. 8    An Example with Concave Boundary 
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3. 2. 4 The Edge Case with Concave Obstacles  

If some of the obstacles are concave, it is possible that the start position or the end position, 

or even both are located in the “pockets” of the obstacles and thus interior to the convex 

hull. In such cases, the convex hull needs to be transformed to guarantee that it passes 

through both the start and end position, so that we could maintain the invariant that at each 

time during the transformation, the start position and end position stay connected, either by 

non-crossing edges or crossing edges. 

According to the topological relationship between the start position, the end position and the 

concave obstacle, this edge case can be further divided into four different categories which 

would be discussed individually later.  

The general idea to cope with the concavity of an obstacle is to transform the original 

problem to smaller sub problems: Firstly, we generate the convex hull of the obstacle and the 

crossing edge as usual. Secondly, we calculate the geometry difference between the convex 

hull and the original obstacle. The result could be either a simple polygon or a multi-polygon. 

For future reference, we call these polygons indented regions.  

Although the indented region shares some similarities (both of them are derived from the 

geometry difference of a convex hull and a polygon) with the auxiliary obstacle defined in 

Chapter 3.2.3, they are in essence different. For an auxiliary obstacle, the convex hull is the 

convex hull of the outer boundary per se. For an indented region, however, the convex hull is 

the one of the obstacle together with the two endpoints, although it is identical to the convex 

hull of merely the obstacle if both the endpoints are located in the pockets of this obstacle.  

The four categories described before could be formulated as follows and are also illustrated in 

Figure 3.9: 

(1) One endpoint (either start or end position) is on the boundary of the convex hull, the 

other is not and they are not in the same indented region. 

(2) One endpoint is on the boundary of the boundary of the convex hull, the other is not, 

but it is on the boundary or interior to the same indented region. 
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(3) The two endpoints are on the boundary or interior to two different indented regions. 

But neither of them is on the boundary of the convex hull. 

(4) The two endpoints are on the boundary or interior to the same indented region. 

Neither of them is on the boundary of the convex hull. 

For the second and fourth case, we need to solve the sub problem with the same endpoints 

and the boundary of the indented region as the new passable area. 

For the first case, we have to link the endpoint that is not on the boundary of the convex hull 

to the convex hull. The key to achieve this linking is to solve two sub problems: this endpoint 

stays the start position, the end position is each of the two endpoints of the common edge 

that is shared by the indented region which includes the endpoint and the convex hull 

generated, the new passable area in the sub problem is the boundary of this indented region. 

Case 1: Case 2: 

Case 3: Case 4: 

Figure 3. 9    Four Categories for Edge Cases with Concave Obstacles 
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The forth case could be solved in a similar way as the first case. The only difference is that we 

have to link both of the two endpoints to the convex hull through solving four sub problems 

instead of two. 

Figure 3.10 shows a concrete example with a concave obstacle which falls into the third 

category: 

(a) 

(b) 

(c) 

(d) 

Figure 3. 10   An Example with Concave Obstacles 

(e) 
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a) initial input 

b) generate the beeline from the start position to end position 

c) generate the convex hull as in the normal case 

d) link the start position and end position to the convex hull through solving four sub 

problems 

e) transform the convex hull to include the start position and the end position 

3. 3 Derivation of the Shortest Path 

Compared to the graph generation, the derivation of the shortest path is trivial. At first, each 

edge on the generated graph is assigned a weight according to a certain distance metric. For 

geographical coordinates, we use the great circle distance, which could be calculated with the 

haversine formula. For points defined in a Cartesian coordinate system, the Euclidean 

distance could be used as the distance metric. 

After weight assignment, the shortest path is calculated with the Dijkstra Algorithm. 

3. 4 Publishing the Algorithm as a Web Service 

To enable further machine-to-machine communication, the algorithm is published as a web 

service, which processes POST-requests with the GeoJSON serialization of the geometry for 

the environment and the endpoints as parameters. The service also returns the GeoJSON 

serialization of the shortest path. The concrete API is provided in Appendix B. 

To facilitate testing, an interactive front-end user interface with the possibility for manual 

geometry input with map reference is also provided. Figure 3.11 shows an example for the 

visualized polygon (boundary and obstacles) together with the calculated path. 
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Figure 3. 11   Interactive User Interface 
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Chapter 4 Results and Analysis 

To test the correctness and the performance of the algorithm, 100 test cases are conducted 

with field geometries that were derived from historical GPS tracks of agricultural vehicles in 

previous work. 

The following parameters are compared between the proposed algorithm and the brute-force 

implementation of the visibility graph algorithm: 

x number of nodes and edges of the generated graph 

x running time for the graph generation and for the routing phase with the Dijkstra 

algorithm 

x length of the shortest path 

The test dataset is generated as follows: 

1) download the field geometries in GeoJSON format from the field service server  

2) select 100 field geometries that have at least one obstacle 

3) select a vertex on the outer boundary randomly as the start position 

4) select an obstacle randomly and then select a vertex on its outer boundary randomly 

as the end position 
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To improve the significance of the comparison, if the beeline from the start position to the 

end position doesn’t cross with the field geometry, step 4 is repeated until it does.  

Parameters of the test machine are listed in Table 4.1. 

Table 4. 1    Parameters of the Test Machine 

Machine Type 13-inch MacBook Pro 

Operating System OS X Yosemite 10.10 

Processor 2.4 GHz Intel Core i5 

Both algorithms are implemented with Python 2.7. Three third-party packages are used: 

networkx for graph operation, django and its binding with the C library GEOS for geometric 

operation,  and matplotlib for plotting. 

The input data and results of the all the test cases are available in Appendix A. 

4. 1 Length of the Shortest Path 

Figure 4.1 shows that, when it comes to the length of the calculated shortest path, the 

Figure 4. 1    Comparison – Length of the Shortest Path 
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proposed algorithm and the visibility graph alternative coincide in all the 100 test cases. 

As the two concrete examples in Figure 4.2 demonstrate, although the two approaches come 

to the same final result, the graph generated by the convex hull approach is much more 

Field # 37 – Convex Hull Field # 37 – Visibility Graph 

Figure 4. 2    Comparison with Field Examples 

Field # 58 – Convex Hull 

Field # 58 – Visibility Graph 
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lightweighted, which contributes to a better performance. The following sections will give a 

quantitative analysis on the graph size and running time. 

4. 2 Graph Size 

Since the convex hull approach only takes impeding obstacles into consideration, it normally 

results in a much smaller graph. As Figure 4.3 and Table 4.2 demonstrate, measured by 

number of nodes, the graph size in the convex hull approach is about 80% smaller. The 

reduction of graph size is even more obvious if it is measured by the number of nodes (nearly 

96%). 

Table 4. 2    Number of Nodes and Edges  

 min max  average 

Number of Nodes    

Convex Hull 3 75 12 

Visibility Graph 15 240 70 

Average ratio between the two methods: 0.19696 (convex hull / visibility graph) 

Number of Edges   

Convex Hull 2 162 16 

Visibility Graph 55 2011  510 

Average ratio between the two methods: 0.04187 (convex hull / visibility graph) 

Figure 4. 3    Comparision – Graph Size 
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4. 3 Running Time 

As mentioned before, the running time for a one-off query is added up by two parts – graph 

generation and routing on the graph. These two parts will be analyzed separately in Chapter 

4.3.1 and 4.3.2. But for repeating queries, the time complexity for each individual query 

depends on that whether the graph could be cached in advance and retrieved immediately 

when needed. Therefore, Chapter 4.3.3 also compares the time complexity of the two 

methods with caching techniques taken into consideration. 

4. 3. 1 Running Time for Graph Generation 

In the graph generation stage, the proposed algorithm outperforms the visibility graph 

algorithm significantly with respect to time complexity (Figure 4.4).  On average, the visibility 

graph approach takes 3.54 seconds to generate the whole graph, while the convex hull option 

takes only 0.06 seconds (Table 4.3), approximately 20 times faster than the brute-force 

implementation of the visibility graph algorithm. 

 

Figure 4. 4    Comparison - Time Complexity for Graph Generation 
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Table 4. 3    Running Time for Graph Generation 

 min (s) max (s) average (s) 

Convex Hull  0.00317 0.77588 0.05934 

Visibility Graph 0.04182 36.56198 3.53935 

Average ratio between the two methods: 0.04810 (convex hull / visibility graph) 

 

This result could be partially explained by the characteristics of the input data:  As a result of 

its complex geometry, each field is represented by many vertices. The running time for 

visibility graph generation is sensitive to the total number of vertices since it iterates through 

all pairs of vertices to check if they cross with the given polygon.   

To the contrary, the convex hull approach is insensitive to the total number of vertices, and 

thus has a more stable running time. 

Figure 4.5 shows how the running time of the two methods evolves as the size of the input 

data increases. For the visibility graph approach, the running time in the graph generation 

stage is polynomial (right), whereas the running time of the convex hull approach shows little 

correlation (left). 

  

Figure 4. 5    Running Time and Input Size 



53 
 

4. 3. 2 Running Time for Routing with Dijkstra Algorithm 

Since the time complexity of the Dijkstra algorithm implemented with a priority queue is 

O(E*logV), where E is the number of edges and V the number of nodes,  the running time of 

the routing phase is sensitive to the graph size. 

 

Table 4. 4    Running Time for Routing 

 Min (ms) Max (ms) Avg (ms) 

Convex Hull  0.03 0.48 0.08 

Visibility Graph 0.07 2.33 0.59 

Average ratio between the two methods: 0.20248 (convex hull / visibility graph) 

 

Because of this reason, the convex hull approach also outperforms the visibility graph 

approach in the routing phase as a natural consequence of smaller graph size (Figure 4.6). 

However, as Table 4.4 indicates, the running time difference in the routing phase is far less 

Figure 4. 6    Comparison - Time Complexity for Routing 
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significant than it is in the graph generation phase, even the worst case among all the test data 

takes only less than 3 milliseconds.  Compared to the graph generation stage, the running 

time difference in the routing stage is almost ignorable. 

4. 3. 3 Total Running Time Considering Caching 

As mentioned in Chapter 2.1, unlike the convex hull approach which requires the re-

generation of the graph at every new request, the visibility graph could be generated only 

once and cached for further requests. 

If we take this caching possibility into consideration, the total running time of the visibility 

graph approach could be reduced remarkably, since it’s no longer necessary to iterate through 

every pair of vertices that are on the original polygon, but only the pairs with one endpoint 

(start position or end position) and one vertex on the original polygon, which reduces the 

quadratic running time to a linear one. For the same polygon, we could assume a constant 

time to determine whether the line segment crosses with a polygon. 

Figure 4.7 compares the total running time of the two methods with the precondition that the 

visibility graphs of all the field geometries are cached and can be retrieved with no additional 

time cost (e.g. network delay) at each new request. In this case, the running time for 

generating the entire visibility graph is replaced with the running time for adding the start and 

end position to the previously cached graph. 

Table 4. 5    Running Time Considering Caching 

 min 

(ms) 

max  

(ms) 

average  

(ms) 

median 

(ms) 

standard deviation 

 (ms) 

Convex Hull 3.22 776.36 59.42 23.28 108.07 

Visibility Graph 8.32 593.31 100.55 52.19 121.43 

Average ration between the two methods: 0.61990 (convex hull / visibility graph) 

 

Although the two curves in the figure seem on par with each other, the statistical 

measurements in Table 4.5 show that the convex hull approach is still at a slight advantage in 

terms of average running time even if we assume that the visibility graphs are cached.  
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4. 4 Thoughts on Further Optimization 

4. 4. 1 Detecting Impeding Obstacles through Spatial Index 

The current implementation iterates through all the obstacles to check if they cross with some 

certain edge on the graph. This doesn’t incur serious performance problem on the test data, 

in which obstacles are in general sparse. In other scenarios with more obstacles, for example, 

pedestrian routing in urban area which involves many buildings or other constructions, 

iterating through all the obstacles is obviously inefficient. 

In such cases, the query of impeding obstacles can be accelerated by storing the geometries of 

the obstacles in a spatial database (e.g. PostGIS). Utilizing spatial indices, the time complexity 

for finding impeding obstacles could be reduced to a logarithmic one. 

4. 4. 2 Return the Shorter Path on the Convex Hull 

As it is illustrated in Figure 3.7, each generated convex hull includes two paths from the start 

point to the end point, except for several edge cases where half of it is invalid and should be 

Figure 4. 7    Comparison – Time Complexity Considering Caching 
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excluded. The implementation in this thesis continues to adjust the two paths until both of 

them are collision-free. Since our goal is to find the shortest path, we could calculate the 

length of the two paths after each convex hull generation. If the shorter one happens to be 

collision-free, we could immediately return it and ignore the longer one, since the substitution 

of one edge with the convex hull would only increase the length of the path as long as the 

graph is positively-weighted. 

However, whether this optimization possibility brings an effective performance gain is 

dependent on the spatial distribution of obstacles. In the worst case, where most convex hulls 

generated have two colliding paths, it could even increase the total running time due to the 

overhead of distance calculation. 

  



57 
 

 

 

 

Chapter 5 Conclusion 

5. 1 Contributions 

This thesis has three major contributions:  

1) a robust Python implementation of the proposed algorithm, which also handles edge 

cases with concavity decently 

2) an in-depth discussion about its suitability for in-field routing based on a thorough 

comparison with other possible approaches 

3) the publishing of the algorithm as a web service 

5. 2 Future Work 

However, the description and implementation of the infield-routing algorithm is only the first 

step towards building an efficient real-time system for both in-field and inter-field navigation. 

Several avenues for future research are outlined below: 

x integration with inter-field navigation 

The current implementation of the algorithm presumes that both the start position and the 

end position are interior to the field geometry. In real world scenarios, the route of an 

agricultural vehicle usually begins from outside the field. The in-field route and inter-field 

route are usually connected through an entry point to the field. If the entry point is not 

unique, the in-field routing task is subject to multiple sources. A naïve integration involves 
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calculating the shortest path for each entry point, and adopting the entry point with the 

shortest in-field travel distance.  

x derivation of the real-time passable area 

During a harvest campaign, the passable area changes from time to time, since the new 

harvested area will become passable to other agricultural vehicles.  Although including these 

real-time changes will increase the precision of the navigation system, it raises also greater 

challenges to the computational efficiency of the system. 

x different graph generation approaches for CTF systems 

In a strictly Controlled Traffic Farming system, both the convex hull approach and the 

visibility graph option are not feasible, since none of them limits turning to headland. For 

such systems, the graph should be derived from the major operation direction and the 

headland geometry. For a partial CTF system, where the crossing with established parallel 

tracks is allowed but not desirable, we can reflect the conformity with the major operation 

direction of a path through weighting.  
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Chapter 6 Summary 

This thesis proposes and implements an approximation algorithm for finding the shortest 

path on two-dimensional surfaces with boundaries and obstacles. The algorithm is especially 

suitable for application scenarios with a large n/h value, with n representing the total number 

of vertices and h the total number of obstacles.  

Test results from infield-routing show that, the algorithm could to a great possibility deliver 

the globally optimal result while reducing the running time significantly. 
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Appendix A Complete Test Results 
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Appendix B API for the Published Web Service 

Request: 

{ 
  "polygonGeom":{ 
    "type":"Feature", 
    "properties":{}, 
    "geometry":{ 

  "type":"Polygon", 
  "coordinates":[[[8.67396354675293,49.4213032372524], 

[8.675851821899412,49.414379560443805],[8.688039779663086,49.41516131480
479],[8.688039779663086,49.42091241054287],[8.67396354675293,49.42130323
72524]],[[8.680744171142576,49.41895823030466],[8.678169250488281,49.415
83138006123],[8.686323165893555,49.41812070066643],[8.680744171142576,49
.41895823030466]]] 

} 
  }, 
  "endPoints":[ 

{ 
  "type":"Feature", 
  "properties":{}, 
  "geometry":{ 
    "type":"Point", 
    "coordinates":[8.677911758422852,49.41739483008498] 
  } 
}, 
{ 
  "type":"Feature", 
  "properties":{}, 
  "geometry":{ 
    "type":"Point", 
    "coordinates":[8.683919906616211,49.415998894945986] 
  } 
} 

  ] 
} 
 

Response (Success): 

{ 
  "status":"OK", 
  "path":{  

"type": "LineString",  
"coordinates": [[8.677911758422852,49.41739483008498], 

[8.678169250488281,49.415831380061228],[8.683919906616211,49.41599889494
5986]] 
  } 
} 
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Response (Error): 

{ 
  "status":"ERROR", 
  "message":”Error message from the server.” 
} 
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